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S O L U T I O N  OF T H E  P E R T U R B A T I O N  P R O B L E M  

F O R  A S H E A R  F L O W  W I T H  

N O N M O N O T O N I C  V E L O C I T Y  P R O F I L E  

M . M .  Sterkhova UDC 517.958+532.59 

The problem of disturbances in a given plane flow of an ideal incompressible fluid, which corresponds 
to a shear flow with a horizontal free boundary, is considered. In the long-wave approximation, the disturbed 
flow is described by a solution of the Cauchy problem for a linear system of integrodifferential equations, 
which in the absence of shear of the velocity vector coincides with the well-known linearized equations of the 
shallow-water theory. An explicit solution of the Cauchy problem is obtained for this system of equations. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  Let us consider the initial boundary-value problem with a free 
boundary: 

p (UT + VgX + VUy) + PX = 0 (0 <~ V <~ H(X, T)), 

H 
p z = - p g ,  H T + ( j U d V ) x = O ,  (1.1) Ux + Vv=O, 

o 

p ( X , H ( X , T ) , T ) = O ,  V(X ,O,T)=O,  U(X ,Y ,O)=Uo(X ,Y) ,  H ( X , O ) = H o ( X ) .  

Problem (1.1) describes, in the long-wave approximation, a plane-parallel vortex flow of a layer of 
a homogeneous heavy fluid of depth H = H(X ,T )  above an even bottom Y = O. Here U and V are the 
components of the velocity vector of the fluid; p is the pressure; p is the density (p -- const); g is the free fall 
acceleration; and Uo(X,Y) and Ho(X) are prescribed functions. 

It was shown [1] that problem (1.1) is reduced to the Cauchy problem for the system of integro- 
differential equations 

1 

ut + uu~ + g f h~du = O, ht + (uh)~ = O, 0 ~ ) ~ 1 ,  (1.2) 
o 

= Uo(x, go(x)), = go(x), 
where u(x, t, )~) = U(x, ~(x, t, A), t); h(x, t, ,~) = ~ ( x ,  t, A); the function ~(x, t, A) is defined by solving the 
problem 

+ ( / U ( x , Y , t ) d Y ) ~  = O, (I)(x,0, A) = AH0(x). (I) t 
0 

The coordinate surfaces A = const are contact surfaces; A = 0 corresponds to the bottom, while A = 1, to a free 
surface. When Uy =- 0 (which corresponds to a vortex-free flow in the long-wave approximation) Eqs. (1.2) 
coincide with the well-known equations of the shallow-water theory. The case of Uy ~ 0 corresponds to a 
vortex (shear) flow. 

Teshukov [1, 2] gives a definition for the hyperbolicity of a system with operator coefficients and 
specified that the hyperbolicity conditions for Eqs. (1.2) are for the case of a monotonic velocity profile 
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(Uy # 0). The hyperbolicity conditions of Eqs. (1.2) were obtained in [3] fvr a nonmonotonic velocity profile 
under the assumption that Uy vanishes at a single point Y,(X, T), 0 < Y,(X, T) < H(X, T) [in this case 
uvv(L)  # 0]. 

In the present paper, an explicit solution of the Cauchy problem is obtained for the system of equations 
(1.2) linearized on the stationary solution u = (u0(A), h0(A)) t (a shear flow with a horizontal free boundary) 
(superscript t denotes transposition). 

The linear Cauchy problem 

1 

u~+uo,~+g/h~d~,=O, h,+ho~+~oh~=O, ~(/,O,A)=u2(x,A), h(x,O,A)=h2(z,A) (1.3) 
o 

describes small perturbations of a shear flow. 
We consider nonmonotonic velocity profiles u0(A) satisfying the conditions 

u0a > 0 at 0 < A < A], u0a < 0 at A1 < A < 1, U0AA()~I) ~ 0, u0(0) < u0(1). (1.4) 

As in [3], we introduce some auxiliary quantities [which are necessary for reducing the system of 
equations (1.3) to a characteristic form]. 

Let A2 be a point of the segment [0,1], where the equality u0(A2) = u0(1) is satisfied. For any point A of 
the segment [A2, All, we introduce the function As = As(A) (As/> A1) defined by the equality u0(A) = u0(A~(A)). 

The smooth function ~b corresponds to a third-degree polynomial in the variable v Q(v,A, As,g~) 
meeting the conditions 

Q(A, A, A~, ~) = r Q(A~, A, A~, r = ~(A~), Q.(A, A, ~ ,  r = r Q.(A~, A, A~, r = r 

This polynomial is representable in the form 

- ~ - 3 ( ~ ( A ) - ~ ) ( A s ) ) ( A - A s ) - l ) ( v  ' -  I (A. -  [- As) ) -  { - I(~,v(A)-~v(As))(A-As)-i(/2 - 1(A-I- As)) 2 

+ ((~f(A)) + r A~) -2 - 2(r ~(A~))(A- A~)-~)( , -  ~-(A + A~)) ~. 

The polynomial Q(v, A, As) is constructed in such a way that the difference between the values Q(v, A, As,C) 
and g,(v) in the vicinity of the point A1 (where A --+ As) satisfy the relation (r - Q(v,A, As,g,)) = 
o((. - A~)~). 

Let us introduce the polynomial Q01(v, A, As, ~') by the formula 

q~(., 

+ ~(~0(A)~(A) + ~0(A~)r - ~-(A + A~)) 

- 2((~0(A)r - ~0(A.)r - ~ . ) - ' ) ( ,  - �89 + A~)) ~ 

- ((~0(A)r + ~0(A.)V(A~))(A - A~)-~)(. - ~-(A + A.)) 3, 

where w0(A) = uov(A)/ho(A). 
We introduce the functionals 6(A), 6'(A), P~ ) [A E (0, A2)], P~ ) [A E (0, A2)], P0~ [A E (A~: 1)], 

P~ [A E (A2, 1)] acting on the smooth trial function ~b following the rules: 

h 0 ( . ) ( r  - r  d .  
(~(A),~b) = r (6'(A),r = -r  (P~176162 = ~ - ~ - u ~  ' A E (0,A2), 

0 

648 



1 

f ~(,) d, (P~l (A), ~,) = u0(-~ -- u0(~) '  A E (0, A2), 
0 

)~2 1 
[ h0(~)(~ (~)- ~,(~)) g,J + [ h0~.)(~(~)- Q(,, ~, ~s, ~)) d, (pO(~),r 

( - ~ ; i  - ~0(-EV J , (~ (V)  : u0(~)) 2 ~ e (~2,~), g 
0 A 2 

(P~(~), o) = 0 u 0 ( ~ -  ~ ( a )  + ~  (r  - ~0(a))(~0(~)-_h0(.)O~ a, a~, r d. ,  a E (a2, ~). 

2. R e d u c t i o n  of  t h e  S y s t e m  of  E q u a t i o n s  (1 .3)  t o  a C h a r a c t e r i s t i c  F o r m .  Following [2], to 
reduce Eqs. (1.3) to a characterist ic form one should find the eigenfunctionals T and and eigenvalues k that  
obey the equat ion  

(qO, Af) = k(qo, f), 

where the opera tor  A is defined by the equality 

1 

A(fl,f2)t(A) (uo(A)/I(A) +g/f2(u)du , ho(A)fl(A) + u0 ()Q f2  ()~)) t �9 

0 

Here (qo, f) denotes the  act ion of the functional qo on the trial function f; f = ( f l ,  f2)* is a sufficiently smooth 
vector function.  

As was shown in [3], the eigenvalues ki of the discrete spec t rum are defined by the equation 

1 

~/ho(~,o(~.) - k~)-2d~ = 1, (2.1) 
0 

which always has two real roots beyond the segment [min;~ u0(A), max~ u0(A)]. The  operator  A has the segment 
of continuous spec t rum k )' = u0(A) (0 ~< A ~< 1). Eigenfunctionals qo i correspond to the eigenvalues kl and k2 
satisfying Eq. (2.1). T he  action of qo i on the arbitrary smooth  function f If = ( f l ,  f2) t] is defined by the 
formula 

1 1 

(~ i , f )  =/fl(u)ho(u)(uo(u)- ki)-2du -/f2(u)(uo(u) - ki)-ldu (i = 1,2). 
0 0 

For each of the  eigenvalues k ~ = u0(A) [A E (0, A2)] there are two eigenfunctionals,  ~o 11~ and t0 ~IA, which are 
given by the formulas 

~r ---- (t~t(,~), W0(~)t~()k)) ' V21A = (gpOo(A) + 5(A), -gP~  

For each eigenvalue k ~ = uo(A) (A ~ (A2, 1)) there are four eigenfunctionals: tO ~ ,  ~o 2~, ~3~, and ~o 4~ given by 
the formulas 

~ = (,~'(,~) + ,~'(~s) + 6(,~(~) - ,~(,~s))(:, - ~ s ) - ' ,  ','o(~')'~(,~) + "o( :~s )5 (~s ) ) ,  

~ '  = ((,~'(,~) - ~'(,~,))(,~ - ,~,)-~, (~o(:~),~(,~) - ~o(,~,),~(~))(,~ - : ,~)- ' ) ,  

~ = ((~'(~) - ~ ' (~,) ) (~ - ~,)-~ + 2(~(a) - ~(~s))(~ - ~,)-~,  (~o(~)~(a) + ~0 (~ )~ (~ , ) ) (~  - ~ , ) -2) ,  

~':~ = (gP~ + 5()~), -gP~ 
3. R i e m a n n  I n v a r i a n t s .  Let us introduce new sought-for functions: 

f ho(u)u(u)du i h(u)du Ri = (i = 1, 2), 
0 (uo(,.) - ~i) ~ u0(~) - ~ 

649 



for ~ ~ (0, As) 

n , , ) `  = - ~ v ( A )  + ~ 0 ( A ) h ( ~ ) ,  

1 1 

re.l)` = g ~ : ~ o - ~ - ~  + u(A)  - 9 ~ 0 ( ~ )  - n o ( A ) '  
0 0 

for ~ e (As, 1) 

ns)`  = ( ~ ( A )  - u ~ ( A ~ ) ) ( ~  - A s ) - '  - ( ~ 0 ( ~ ) h ( ~ )  - ~ 0 ( ~ ) h ( ~ ) ) ( A  - ~s)-', 
R3)` = (u~(A) + uv(A~))(A - As) -2 - 2(u(A) - u(A~))(A - As) -3 - (r + wo(A~)h(As))(A - As) -'~, 

)`/h0(~)(u(~= ~(~)) d~ + ]  h0(.)(~(~)- O(~, ~, ~, ~)) d~ 
n4)` = j ( ~ 0 ( ~ )  - ~ o ( ~ ) )  ~ (-~o(Y) - u0(A))~  

0 )'2 

)`2 + r  h(~)d~ + }  (h(~)(~o(~)- ~o(~))- ho(~)Q~ 
J ~0(~- ~o(~) Y (~o(~) - ~0(~)) 2 
0 )`2 

L e m m a .  The quantities Ra and R2 are conserved along the characteristics dx /d t  = ki (i = 1,2). The 
quantities Ril)` (i = 1,2) are conserved along the characteristics dx)`/dt = u0(A) [A E (0, As)]. The quantities 
Ri)` (i = 1 , . . .  ,4) are conserved along the characteristics dx)`/dt = uo(A) [A E (A2, 1)]. 

4. S o l u t i o n  of t h e  L inea r  P r o b l e m .  At the initial instant of time, the Riemann invariants R are 
the known functions of the initial data. Since these values are conserved along the appropriate characteristics, 
we obtain an explicit representation of the solution in terms of the Riemann invariants: 

Ri(x,  t) = Roi(x - kit) (i = 1.2), 

Ri)`(x, t ,A) = Roi ) ` (x -uo(A) t ,A)  for A e (A2,1) (i = 1 , . . . , 4 ) ,  (4.1) 

- Ri l)`(z , t ,A)  = Ro i l ) ` ( x -uo(A) t ,A)  for A e (0,+~2) (i = 1,2). 

Having solved the system (4.1) with respect to u and h, we find a solution to the initial linear problem. 
We reduce the system (4.1) to the equation f ( x ,  t, A) = u(z,  t, A) - u2(x - uo(A)t, $). The equation for 

the function f will take the form (for brevity, the arguments x and t are omitted) 

1 f(A)-g/ 1 0 ( f ( u ) - f ( A )  ) d u = g l ( A ) ,  (4.2) 
o ~ \~o(~) ~o(~) 

where gl(A) = 91(x,t ,  A) is the known function which can be expressed in terms of the initial data: 

1 1 
9 f j  (hs(x - uo( u)t, u) - hs( x - uo( ~ )t, u) ) du _ 9 -  [J ( ho(u)u2~( x - uo( u)t, u)t ) du 

gl(A) 
o ~o(~) - ~o(~) o ~ ) -  ~-~ 

1 
_g f ho(u)(us(x - uo(u)t, u) - u2(x - u o ( A ) t ,  u)) du 

(4.3) 
Jo ( ~ 0 ( ~ )  - u 0 ( ~ ) )  s 

One can easily check that  Eq. (4.2) has a solution of the form fl l  = a~(uo - k~) -~ + as(u0 - k2) -a (al  and 
a2 are arbitrary quantities independent of A). 

Let us seek a general solution of Eq. (4.2) in the form f = fl  + f n ,  where f l  satisfies the conditions 
fl(0) = fa(A1), fl(1) = f~(A1). The fulfillment of these conditions can be ensured by a proper choice of a~ 
and as. The function fl  meets the symmetry property f~(A) = f~(As) [A ~ (A2, 1)]. This follows from the 
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equalities (4.1). If the function fl  is known, the coefficients al and a2 are determined from the relations 
/ ~dx .  t) = R 0 d x  - ~ t )  (i  = l ,  2): 

,~i = 2 ( u o ( , )  - k d  3 g~ (i = 1.2). (4.4) 

Here 

~( h~.(x - u o ( . ) t ,  . )  - h2(x  - kit,  . ) )  d .  ? ( h 0 ( . ) ~ . ~ z ( x  - u o ( . ) t ,  . ) t )  d .  
~i = - J 7 ( 7 ) : ~  o ~ o ( . )  - hi o 

: ho(L')(u2(x - uo(u)t, v) - u2(x - hit, u)) du (wol)ufld. 

o ( ~ o ( . ) - k ~ ) ~  o 4 0 - k i  ' 

Integrating by parts and changing the variables, we transform Eq. (4.2) into the form 

g T*p(r ' )dr '  ] 
1/ ' (r)  [(7" -- tt0, ) + g( t t01 --  T) - -10d~I (u01  - -  U0*) --  g( t t00 -- T)--I~o01(U00 --  U0*) --  S .  - ~ - - T  J 

u00 

+ ~*p(,')~(,') d,' 
g J  7 - ~ r  = --f l ,  + gl(v), (4.5) 

uoo 

where ~/,(r) = (fl(T) -- f l , ) ( r  -- U0,) -1 (r = 0 with A = 0. A = 1); r', r, and w0~ is the abridged notation 
for u0(~'), u0(A), and wO(As); indices 00, 01, and 0* correspond to the values of the functions u0 and w0 for 
)~ ---- 0, )~ = 1, ~ = .kl; f l ,  = f l ( ) ~ l ) ;  ~ 0 ( r )  ---- ~ 0 ( ' r ( ) Q ) ;  O)Os(T) "= ~ 0 s ( T ( ) Q ) ;  ~(7")  = ~ ( ' r ( ) ~ ) ) ;  g l ( T )  = .ql(T( .~)) .  

The function p(r), which is discontinuous at the point u01, is specified by the formulas 

p(r) = ( r -  uo.) O ( w ~ )  for r E (uoo,uo,), 
(4.G) 

(o o(&)) 
p(7) = ('1" - -  U0,)  ~ --  ~ T  for  ~" e ( u 0 1 , u 0 , ) .  

The function p(r) has a singularity p = O([T --U0,]) -1/2 at the point u0,, because, in view of assumptions 
(1.4), A = AI (r - uo,) = 0((A - *kl):) in the vicinity of the point and hence Iwo] = [Uo),holl = O(IA - ,~11) = 
O(]r -u0,1U2). Integral equation (4.5) is reduced to the Riemann problem 

r = a(~)r + g~(~), ~ ~ (~00, ~0,) (4.7) 

for the function 

J T~Z 
UO0 

in the plane of the complex variable z with a cut along the segment [u00,uo,]. Here plus and minus signs 
correspond to the limiting values of the function for z --> r from the upper and lower half-planes; G(r) = 
( a ( r ) -  b(r)) /(a(r)+ b(r)); g2(r) = (p ( r ) ( - f l ,  + g~(r)))/(a(r)+ b(r)); and gl ( r )  is defined by Eq. (4.3): 

~f':(r  d~' (4.8) q(T) ---- (T - -  U0*) + g ( ( u 0 1  - -  U0,)(U01 --  T)--Iw0"I 1 --  (U00 --  U0*)(U00 --  T)--I~0"01) --  g 7"-7-- 7 , 

u00 

b(,) = ~igp(~). 

Let us extend the boundary condition to the real axis, assuming the function G to be equal to unity 
at the segments ] - oo, uo0], ]u0,, +oo[. The Riemann problem under consideration has coefficients that are 
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discontinuous at the point u0, [G(u0, - 0) = -1 ,  G(uo, + 0) = 1]. Let us ceek a solution to the Riemann 
problem in the class of functions vanishing at infinity and unbounded at the point uo,. 

Following the general theory, the problem of the unique solvability of problem (4.7) is solved by 
calculating its index [4]. The absence of complex roots of the characteristic equation (2.1) and hence the 
absence the solutions of (1.3) that grow infinitely with time is ensured (following the argument principle) by 
fulfillment of the condition 

1 
--A arg G = -3 ,  (4.9) 
71" 

where A is an increment at the segment ]uoo, uoa[U]uol, uo,[. If conditions (4.9) and a 2 -  b 2 r 0 with z E 
(u00, u0,) are fulfilled, the index ae of the Riemann problem (4.7) in the above-mentioned class of solutions 
equals - 1  [3]. When ae = -1 ,  problem (4.7) has a unique solution only if 

[ a2tr) ar 
J X l ( r )  - 0 (4.10) 

u00 

[X1 is the canonical solution of problem (4.7)]. The canonical solution of the Riemann problem, which is 
regarded as a function satisfying the boundary condition and having zeroth order everywhere in the finite 
part of the plane and the (-ze)-order at infinity, has the form 

X l ( z )  --- (z - u00)(z  - u01)(z  - k l ) - l ( z  - k 2 ) - i a ( z )  = P(z)a(z) .  

Thus, the solution of Eq. (4.5) can be written in the form 

"]* ( - f , ,  + ga(r'))p(r ')dr'  
r  v ) (a2~-~-_ b - ~ ( T ~ T ~  -- r ) ,  

u0o 

where the value f l .  is determined from the solvability condition (4.10): 

7" g a(r)p(r)dr / ' ! *  p(r)dr  
f l .  = (a2(r) _ b2(r))P(r) (a2(r) _ b2(r))P(r) .  (4.11) 

u00 u 

Thus, we have proven the following 
T h e o r e m .  Let u, u, ,  ut, u2(z - uo(v)t, v) E C2+"[0,1], h, h~, h,, h2(z - uo(v)t, v) E C1+~[0, 1] 

(0 < a < 1) and the hyperbolicity conditions a 2 - b 2 ~ 0 and (4.9) hold [a, b from (4.8)]. Then the solution 
to the Cauchy problem (1.3) has the form 

u(x, t ,  v) = f l ( x , t ,  v) + Otl(U0(V ) -- k l )  -1  + o~2(uo(p ) - k2) -1  + u 2 ( x  - uo(1])t ,  1]), 

h ( x ,  t ,  i]) ~- t ~ o l ( / / ) ( u v ( x ,  t ,  l/) - U2v(X - uo(1]) t , / / ) )  + h 2 ( x  - uo(1])t ,  1]) (1] r )~1), 

h(x , t ,~ l )  -1 = houovv(A1)(uvv(x, t, )~1) - U2vv(X - u0(/~l)t, ~1)) -F h2(x - u0(/~l)t, ~1). 

Here ~1 and a2 are found from formulas (4.4); 

fa(x, t, v) = f l (x ,  t, )~1) Jr" ~ (X,  t,//)(~d0(1]) -- U0(~I) ) ;  

r  t I v) = a(uo(v))(--fl(x,  t, A1) + gl(x, t, v)) -- g(a2(uo(v)) 

UO. 
[ (--fl(x, t_, )q) -{- gl(:~,kv_))p(v)dr 

-b2(u~176 J (a2(r) - b 2 ( r ) ) P ( r ) ( r -  uo(v)) ' 
u00 

where P(uo(v)) = (uo(v) - uoo)(uo(v) - uol)(uo(v) - kl)- l(uo(v)  - k2)-1; a, b are determined from (4.8); 
gl(z, t, v), from (4.3); p(r), from (4.6); and f l (x ,  t, ha) = f l . ,  from (4.11). 

The formulas give an explicit representation of the solution of the Cauchy problem for the system of 
equations (1.2) linearized at a shear flow with a nonmonotonic velocity profile. 
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In conclusion, we gives an example of the velocity profile for which the hyperbolicity conditions are 
satisfied. Let uo = uo, - ( ( 1 / 2 ) y - ( u 0 ,  -uoo)1/2) 2, then "~o = (uo, - u o )  1/2 for 0 ~< A < A1, ":o = - (uo ,  - u o )  1/2 
for A~ < A ~< 1. The function )~+(uo) = a - b has the form 

X+(uo) -: ( n o - n o , ) - g ( u o , - u o l ) l / 2 ( u o - u 0 1 )  -1 - -g (uo , -uoo) l /2 (uo-uoo)  -1 

1 
+ ~(uo, - uo)-l /2g(in((luo,  - uoo] 1/2 -4- luo, -  o11/2)1 o -  oo1-1) 

+ ln((luo, - uol[ 112 + {uo, -  ol'/e)l 0 - U01]--I)) -{- ~riKg(uo, - u0) -1/2, 

where K = 1/2 for uo E]uoo, uol[; It" = 1 for uo E]UOl,UO,[. 
Let us describe the behavior of the function X+(Uo) at the segment "]uoo, uol[: 

(X+/IX+[)(uoo + O) = --1, (X+/[k+[)(UOl - 0) = 1, at the section ]u00, u01[ Im(g +) > 0, and hence A arg X + = 
-Tr and A arg G = -27r [G = ((X+)2/[X+I2)]. Furthermore, (X+/lx+l)(uol  + O) = - 1 ,  (x+/ lx+l)(uo,  - O) = i. 
At the segment ]u01,u0,[ Im(x +) > 0, Re(x +) < 0, and consequently A arg X + = - r r /2  and A argG = -Tr. 
Thus, the total increment of the argument of the function G at the segment ]u00, u01[U]u01, u0,[ equals (-3~'), 
which means fulfillment of the conditions (4.9). 

The author is thankful to Prof. V. M. Teshukov for his interest in of this work and for helpful discussions 
of the results. 
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